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Abstract. We describe some aspects of our research in relational knowl- 
edge discovery and combinatorial scientific computing [ll], with special 
emphasis on the relation to the research portfolio of the conceptual struc- 
tures community. We have recently been developing [lo, 121 a combinatc- 
rial approach to the management and analysis of large ontologies such as 
the Gene Ontology (GO) [6]. Our approach depends on casting I11c CO A S  

a labeled partially ordered set (poset) [ l G ] ,  and Lhen using scoies based on 
pseudo-distance measures which we have developed to categorize lists of 
labels (in the case of the GO, genes and gene products) concerning their 
clustering and depth within the GO. We hold that such taxonomic se- 
mantic hierarchies serve as the core conceptual structures underlying all 
ontological databases, and through this work we have developed a nuin- 
ber of what we believe to be both fundamental and novel ideas about 
treating such large posets as data objects, in particular the nature of 
distance in such structures, and the nature of level as an anterval-valued 
property. After laying out this basic framework, we C A I ~  thcn 111 ing t,Iicsc~ 
ideas to a particular kind of poset, nainely tlic concepl lattice [ 5 ] .  Con- 
sidering a concept lattice as a poset, we are then prepared to develop 
techniques for anomaly detection in relational data by measuring the 
relative level of concepts vs. their cardinalities. 

1 Introduction 
Semantic hierarchies are ubiquitous, not just in formal semantic structures like 
conceptual graphs, ontologies, and concept lattices (CLs), but also in meta- 
modeling environments, object-oriented typing archilect,ures, and even iiilLui al 
and computational linguistics. We are concerned with the fundanieiital nature 
of semantic hierarchies, and report on the current state of our work here. 

We open with some discussion of the POSet Ontology Categorizer (POSOC), 
which was the motivation for the beginning of this work. POSOC was in turn 
motivated by the need for biologists to use algorithmic tools to navigate the Gene 
Ontology (GO), the best example of the vast, novel conceptual structures which 
the genomic revolution has thrust into the world only very recently: very large, 
taxonomically organized, hierarchical data objects as specialized databases. 

Our view is that semantic hierarchies naturally livc \~111iiii the ~ l tco iy  01 
partially-ordered sets (posets), and POSOC was developed on that basis. After 



reviewing POSOC’s foundations, including some elementary partially ordered 
set (poset) theory, we then move on to consider general semantic hierarchies, 
and thus arrive at  our core points: explicating our new conceptualizations of 
level and distance in posets as a vector-valued quantity of the heigl-11; and width 
of the neighborhood (defined in a particular way) of a collection of poset; nodes. 

We conclude with some speculations about the use of such concepts in lat- 
tices, particularly CLs, conceived of as proto- or putative ontologies generated in 
the context of available relational knowledge, in our case, protein-ligand binding. 

2 
The computational biology revolution has produced a proliferation of large data- 
bases of genomic information. A premier example is the Gene Ontology (GO)’ 
[6], a large (> 16,000 node), standardized knowledge structure consisting of 
three branches: Molecular Function (MF), Biological Process (El’), aiid CI:IIIIIAI~ 
Component (CC). Each branch is organized as a taxonomy of nodes which rep- 
resent different categories of genomic characteristics. Once a gene is sufficiently 
characterized, it can be attached to the appropriate node, as shown in Fig. 1 [GI. 

The POSet Ontology Categorizer (POSOC) 
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Fig. 1. A portion of the BP branch of the GO (61. GO nodes in the hierarchy have 
genes from three species annotated below them. 

We have been working on the categorization task in the GO, where fol- 
lowing a gene expression experiment involving high throughput microarrays or 

http: //ww.geneontology. org 



Affymetrix gene chips, a biomedical researcher is confronted with a list of a few 
hundred to a thousand genes, from which she will need to estra.cL usei'ul iiil'or- 
mation about the various types of biological processes that were affected in tlie 
experiment. The researcher then wants to take the names of these genes which 
have been annotated to the GO and gain an understanding of their overall func- 
tion by examining their distribution through tlie GO: are they localized, grouped 
in distinct areas, or spread uniformly? Manual approaches and existing software 
are inadequate to answer this question over hundreds of proteins and more than 
16,000 GO nodes, and thus an algorithmic approach is necessary. 

At its core, the GO is a hierarchy of semantic categories. So to approach 
this problem, we have needed to address a number of f u i ~ r l n m c ~ ~ t i ~ l  rjiiestions 
about the nature of such hierarchies, modeled as partially ordered sets (posets), 
to provide algorithmically determined numerical scoring of the nodes in tlie GO 
with respect to the genes of interest. We produce a ranked list of appropriate 
summarizing nodes within the GO, which act as functional hypotheses about 
the characteristics of the genes expressed. 

POSOC has been developed over the past year [9-121 by researchers at  the 
Los Alamos National Laboratory (LANL) and Procter & Gamble Corp. (P&G), 
and is currently in use by staff scientists at P&G2. In addition, extensions of 
POSOC to handle textually-based queries have been used receiltly ill ;I s i i l m i s -  
sion by LANL for tlie BioCreative challenge3 for automated annotation [18]. 

2.1 Posets  
We first introduce some elementary ideas from the theory of finite partially 
ordered sets (posets). This is mostly standard and elementary [16], but in some 
cases novel (to our knowledge), at  least in terms of notation and perspective. 

P2 is 
a reflexive, anti-symmetric, transitive binary relation on P. Posets are the most 
general combinatorial structures admitting to description i n  terms of leaels, i n  
our case, levels of semantic generality. While inore specific than directed graphs 
or networks (every poset is a digraph with no cycles), they are more general than 
trees or lattices (every tree and lattice is a poset), in  that collections of nodes 
can have multiple parents. 

The GO is notably a directed acyclic graph (DAG), as is evident in  Fig. 1, 
and every DAG determines both a unique poset and a unique Hasse diagram, 
in which all transitive links have been removed4. In a poset, two nodes p ,  q E P 
are comparable, denoted p N q ,  if either p 5 q or p 5 q; a chain C P is a 
collection of comparable nodes; and the height X ( P )  is the size of the largest 
chain. Similarly, two nodes p , q  E P are non-comparable il' p + (I, ail ailti- 

chain is a collection of non-comparable nodes, and the width W ( P )  is the size 
of the largest anti-chain. For any node p E P ,  its ideal is l p  := { q  E P : q 5 p } ,  

A finite poset is a structure P = (P, 5 )  where P is a finite set and 5 

As previously reported [9,10,12], POSOC was originally targeted specifically at the 
GO, and was thus called the Gene Ontology Categorizer (GOC). GOC has now been 
generalized to deal with any poset ontology, and is thus now called POSOC here. 
http: //wu.mitre .org/public/biocreative 
I.e., if both a 5 b and b 5 c are included, then if a 5 c is present, it is removed. 
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its filter is T p := { q  E P : q 1 p } ,  and its hourglass is 3(p) := T p U J. p .  Define 
these concepts over a collection of nodes Q E P similarly: 

1Q := u LP,  T Q  := u T P ,  z(Q) := u 
P E Q  P E Q  P E Q  

For any subset Q 5 P ,  a node p E Q is maximal in Q if Pq E Q,q > p .  
Let Max(Q) be the set of all maximal nodes in  Q, notiiig that hhs (Q)  i i i i i b t  bc 
non-empty if Q is non-empty. Define the set of all minimal nodes Min(Q) dually. 
For any two nodes p ,  q E P the set T p n T q is their “joint filter” in some sense, 
and p V q := Min(Tp n T q) are their joins. For a collection of nodes Q E P ,  let 

Lower bounds and meets A are defined dually. Note that posets we clistingiiished 
from lattices in that p V q P is not a single node, aiid is iiot guaranleed to 
exist, but is rather an arbitrary, possibly empty, subset of nodes. 

If there exists a node 1 E P such that Max(P) = v P = {l}, then we say 
that P is upper-bounded, and dually for 0 E P. If either there is no unique 
upper or lower bound 0 , l  E P, then we can create them easily by constructing 
the closure of P as P := ( P  u (0, l}, s), where Vp, q E P,p 3 q c-) p 5 q,  and 
Vp E P,O p 5 1. Most of our results below require either an upper-, lower- 
, or totally bounded poset. We will presume that when P is not naturally so 
bounded, its closure P is available in this way. 

For two Comparable nodes p 5 q,  all the nodes “betweeii“ tlieiii is tlie iiiter- 
val [p, q] = {t  : p 5 t 5 q }  = Tp n J. q. For comparable subsets P I ,  P2 E P with 
PI 5 PZ (so that V p  E P1,q E P2,p 5 q) ,  their interval [PI ,  Pz] is 

IPl,P21 := u [Pl,P21. 

( P l , P 2 ) E P l ’ X P 2  

For two comparable nodes p 5 q, the interval [P,q] is equivalent to the set 
of all chains between p and p ,  denoted C ( p , q ) .  The vector of chain lengths 
h(p,q) := (IC(p,q)l) is the collection of the lengths of all tliesc cliaiiis. and 
finally the minimal and maximum chain lengths between p and q respectively 
are h*(p,q) := mincEc(p,q) ICI and h*(p,  q )  := lnaxcEc(p,q) 1 ~ 1 5 .  

The Hasse diagram of an example of a poset on a set of nodes P = { 1, A ,  B ,  . . . , I<} 
is shown in Fig. 2. Note the inherently two-dimensional structure displayed by di- 
vision into levels: while nodes can be re-drawn left to right (width) as convenient, 
vertically it’s crucial that higher nodes be placed above lower ones (height). 

2.2 

The GO has measurable poset properties, as sliowii in  Tal). 1 and Fig. 3 (GO 
for September, 2003). The height parameter shows that the GO is properly seen 

The GO as a Labeled Poset 

Here we assume the Hasse diagram, otherwise p 5 q + h,(p,  q )  = 1. 
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Fig. 2. An example of a labeled poset. 

as a structure divided into levels, 15 for BP and 13 for MF and CC. It branches 
out quickly and broadly, with twice as many nodes (10.6K) being “terminal” 
leaves compared to interior nodes (only 5.4K). Calculating the width of a poset 
is still daunting algorithmically, so the width shown here is only a lower-hound 
estimate. Thus the structure is at  least three orders of inagiiitude wider tliaii i t  
is high. Fig. 3 shows the distribution (on a log scale) of the number of parents 
and children per node. Note that a few nodes have hundreds of children, and a 
substantial quantity have at least two parents, some as many as four or five. 

[Nodes Leaves Interior Edges 7-l W 
MFI 7.OK 5.GK 1.3K 8.1K 13 2 3.5K 
BP I 7.7K 4.1K 3.GK 11.81< 15 2 2.9K 
CCI 1.3K 0.9K 0.4K 1.7K 13 0.4K 
GO1 16.OK lO.GI< 5.41< 21.5K 16 > 5.9K 

Table 1. Poset statistics of the EO. 

We can then define a structure 0 := ( P ,  X, F )  as a POSe t  Ontology 
(POSO), where X is a finite, non-empty set of labels, and F : X  I-+ 2‘ is a 
function mapping each label 2 E X to a collectioii of nodes F ( z )  E P. In Fig. 2, 
we have X = {a, b , ,  . . , j } ,  and e.g. F(b)  = { A ,  E ,  F } .  711 t h  cnsc of tlic CO, 
then P is the collection of GO nodes, 5 is the oidering relations present in the 
GO, and X is the set of genes annotated to the GO, as illustrated in Fig. 1. 

2.3 POSOC Methodology 
We can now pose the categorization problem in the context of the example 
in Fig. 2: given a particular set of genes of interest cast as a query, say Y = 



Fig. 3. Distribution of number of children (left) and parents (right) per node. 

{c,  e, i} X, what node(s) in P best summarize that set? One answer is C, since 
it “covers” all three genes, and does so in the most specific way. The node 1 also 
covers the genes, but would not be favored since it’s a more general category. But 
it can also be argued that H is a good answer, since, while it only covers c and e, 
it does so more specifically than C does. We will see that this interplay between 
“coverage” and “specificity” will be central to the methodologv dr~vchl)c*rl  

To proceed, we need the concept of a pseudo-distance as a function 6: P2 I+ 

R where Vp 5 q E P, h,(p, q)  5 6(p, q) S h*(p, q) ;  and a normalized distance 
as 8 := 6/‘H(P). Current pseudo-distances implemented in POSOC include: the 
minimum path length 6, := h,; the maximum path length 6, := h*; 
the average of extreme path lengths 6,,(p,q) := h*(psq)+h*(p*d; 2 and the 

average of all path lengths 6,,(p, p‘) := +. Other candidate pseude 
distances are in exploration. 

t l ioi i  \vai i t  
to develop a scoring function Sy(p) which returns the weighted rank of a 
node p E P based on requested nodes Y. We actually use two kinds of scores, 
ax1 unnormalized score Sr: P H R+ which returns an “absolute” number, 
and a normalized score S y :  P H [0,1] which returns a “relative” number. 
We allow the user to choose the relative value placed on coverage vs. specificity 
by introducing a parameter s E {. . . - 1 ,0 ,1 ,2 ,3 , .  . .}, where low s emphasizes 
coverages, and high s emphasizes specificity. The scoring function can use either 
the unnormalized distance S, or the normalized 8. Letting r = 2s, we have the 
four scoring functions shown in Tab. 2. 

We then find non-comparable nodes within the ranked-list to serve as “cluster 
heads”. The resulting clusters are at different depths in P: while “headed” by 
non-comparable nodes, their contents (the collection of their descendants in P) 
can overlap. Cluster heads which are non-comparable to all other cluster heads 
of lower rank are called “primary”, and those above some previously identified 
cluster head “secondary”. 

Output for the example in Fig. 2 is shown in Tab. 3, for query Y = {c ,  e, i}, 
specificity values s = - l , l ,  and 3, doubly-normalized score 5, and pseudo- 

Ch,, h 

Given a pseudo-distance and a set of nodes of interest Y C X ,  



II Score 

R,ank 
1 
2 
3 
4 
5 
6 
7 
8 
9 

distance 6,. Cluster heads are shown in bold, and secondaries are labeled wit11 
*. Inspection reveals desirable results: for low specificity, C is the preferred pri- 
mary cluster, with 1 a secondary; for high specificity, H and J are preferred ( J  
specifically covers i), with C as the next-ranked secondary. 

s = - 1  s = l  s = 3  

0.7672 C 0.5467 H 0.3893 H 
0.6798 1* 0.3867 C* 0.3333 A;.J 
0.6315 H 0.3333 A;I;J 
0.5563 I 0.0617 C* 
0.5164 B 0.0615 I 
0.3333 A;J 0.2400 B* 0.0559 F;G;K 

0.2267 1* 
0.2981 F;G;K 0.2133 F;G;K 

W P )  P W P )  P SY ( P )  P 

0.0112 B 

Table 3. 

POSOC was validated by a highly experienced molecular immunologist who 
had no prior knowledge of the POSOC to assess its utility and accuracy [12]. It 
was also validated formally by comparing POSOCs annotations to a collection 
of independent annotations of collections of GO nodes (corresponding to our 
lists of target genes) available through the InterPro projectG, which catalogs 
assignments of protein families, domains, and functional sites to GO TDs 1121. 

As noted, we are in the process of generalizing POSOC‘s iiiiPleiiieiiLaLioil LO 

target any POSO, not just the GO. Current targets include the Enzyme Com- 
mission (EC) database’ and the MEdical Subject Headings (MESH) ontology’. 

3 
While modern bio-ontologies take many forms, an adequate overall description 
is of a taxonomically organized data object over which automated inference and 

Requirements for Working with Semantic Hierarchies 

http://vvu.ebi.ac.uk/interpro 
http://vvu. biochem.uc1 .ac.uk/bsm/enzymes 

a http: //vvu.nlm.nih.gov/mesh/meshhome. html 



reasoning (for example using description logics [2]) is performed. Leading re- 
search in ontologies tends to focus on logical properties, inference, and search. 
Our view is that what has made existing bio-ontologies such as the GO so success- 
ful are their attributes as hierarchical, taxonomic, categorizations of biological 
objects, coming closer to being specially structured databases. 

Moreover, these attributes are fundameiital to other aspects: it is clear that 
large taxonomically-organized database can be very useful without an inference 
engine, but the converse is not so evident. Indeed, semantic hierarchies are truly 
ubiquitous. Even a casual observation reveals them at the foundations of knowl- 
edge architectures such as conceptual graphs [17], as object-oriented data types 
[14], in CLs and related work [5], and even in verb type hierarchies from cognitive 
linguistics [4]. And yet there seems to be little attention paid to the need for algo- 
rithmic approaches to their representation, analysis, navigation, manipulation, 
and measurement, or even their generic properties as fortnal struct,urcs 

While there are no doubt many reasons for this, these likely include the iel- 
atively later development of poset theory as compared to lattices and networks 
(the first serious textbook appeared in 2003 [16]), and especially the novel ap- 
pearance of these large, taxonomically organized knowledge objects which now 
require this kind of computer-scientific approach. 

So we are motivated to continue in a number of directions: 

- First, we have found our pseudo-distances 6 lacking, as they are only available 
between comparable nodes. We are thus seeking to generalize this idea to a 
more inclusive measures of distance, size, level, etc 

- There are many more tasks which need to be addressed within tlie overall 
poset ontology world than the categorization task. Exainples include: 
Matching: How do we match two parts of a poset ontology? This arises, 

for example, in both the BioCreative task and the InterPro validation of 
POSOC, where POSOC has provided certain answers, and we wish to 
compare those to some “correct” answer provided by someone else. This 
can be formalized as follows: assume a poset P = (P, <), with PI ,  P2 E 
P ,  inducing the sub-posets PI = (PI, S(,,,) and P2 = (P2, I(,,,). How 
can we then measure the similarity of PI and ?2? 

Comparison: Assume now that we have two different orderings available on 
the same underlying set, for example ontologies constructing by different 
teams of researchers. How can we compare their similarity? This can also 
be formalized as assuming PI := (P, 51) and P2 := (P, 5 2 ) ,  then how 
can we measure the similarity of P I ,  P2? 

Merger: Finally we have the most general forniulation of the problem, 
assuming two complete different ontologies PI := (PI, 51) and P2 := 
(P2, 52). How can we hope to measure their similarity, and ultimately 
find ways to merge them together into soine ncw pose(, P 011 Pi u 1’27 

The general situation is illustrated in Fig. 4, where the EC and the GO are 
shown as posets on different underlying sets P ,  but with the same set of 
labels X. This common labeling can also be used as a source of comparison 
information, showing, for example, similarity between nodes A ,  G, F of GO 



and E,  J of EC in virtue of the annotation of genes b, g, 11, i, some of which 
are analogous, and some of which (e.g. i) are not. 

1 

A 
4 C J:, K 

G F ’  E 
b v h  \hi 

Di 
EC 

‘i 
GO 

Fig. 4. Cartoon of the general ontology matching problem between the EC and GO. 

- We are also interested in considering CLs as semantic hierarchies (see Sec. 5 ) ,  
and using formal measures of level and distance in tlieni to induce hypotheses 
about both extractable knowledge and potential anomalies in  data sets. 

- Indeed, this general class of problems arises in a number of more specialized 
lattices and posets, for example posets of system reconstruction hypotheses 
in multi-dimensional statistical analysis [8,13,15] and.classes of random sets 
in generalized information theory [7]. 

4 Measures in Semantic Hierarchies 
In all these instances, what is required ale much betlei coiiceplualizatioiis 01 
measures in posets. Our thoughts extend to two important concepts: a general, 
interval-valued concept of vertical level or rank within a poset; and a general, 
vector-valued concept of overall distance between two arbitrary nodes. 

The scope for this paper allows only a partial formal development. Here we 
introduce a few suggestive definitions and results, and refer the reader to future 
work for a detailed development, including more proofs of the basic results. 

4.1 Interval-Valued Poset Rank 

Rank as a measure of the vertical “level” of a node is an iinpoi tant coinbiiidioi ial 
concept [l, 31, but usually used only in more constrained combinatorial structures 
such as lattices or so-called Jordan-Dedekind, or JD,  posetsg. We have found [16] 
rank to be defined in posets in a lower-bounded way: 

0, p E Min(P) 
n, p E Min ( P  - { q  : r+(q) < n}) 

r.(p) := 

Those where all chains between comparable nodes have the same length. 



We use r,  suggestively, as its dual function is readily available: 

0, p E Max(P) 
n , p E M a x ( P - { q : r * ( q )  <n}) 

r*(p) := 

And so an interval rank function can be easily identified as R: P H V(’H(P)),  
with R(p) := [r,(p),R(P) - r*(p)]’O, where V(n)  := {[z,y] : z,y E Z+,O 5 
x 5 y 5 n} is the set of all integer intervals for n E I+ A n  esnmplc of a 
bounded poset equipped with its interval rank function is shown in Fig. 5, so 
that R(D)  = [l, 21, R ( K )  = [1,4]. 

. 

. - 4 . .  

. .3.. 
r 
. . 2 . .  

- . I . .  . . . - 1 . 7  //- . . I.. 
0 

Fig. 5.  A bounded poset equipped with its iii~,crvL~1 iu111\  

To conceptualize the interval rank, first, P can possess at  most R ( P )  “levels”. 
So for any node p E P ,  it’s level has to be no less than as “high up” from the 
bottom as it is, but no more than how “far down” from the top it is. 

Theorem 1. R(p) = [h,(O,p),’H(P) - h,(p, l)] 

Proof. Since R(p) = [r,(p),’H(P) - r*(p)], it is sufiicieiit to show that r , ( p )  = 
h,(O,p), and r*(p)  = h*(p,l). For p = 0, clearly r,(O) = 0 = l z , (O,O) .  So if 
p E Min(P - Min(P)), then r,(p) = 1, and also h,(O,p) = 1. Indeed, at  each 
step Min(P-  { q  : r,(q) < n}) = { q  : h,(O,q) = n}, and thus r, partitions 
P into bands of lower rank n with h, = n. Thus Vp E P,r t (p )  = Iz,(O,p).  
r*(p) = h,(p, 1) follows by a dual argument. 

R induces an order mapping R : P  H (’D,d) from P to the set of integer 
intervals D, where 3 is an interval order on V. Whether R is order preserving 

lo Note that if we instead use R ( p )  := (‘H(P) - r*(p),  r* (p ) ] ,  thc “Lop” m d  ‘ b u ~ ~ o i i i ’ ’  
as in Fig. 5 are simply reversed. 



depends on the interval order used. For two integer intervals I = [ I* ,  I * ] ,  J = 
[J’, J*]  E D, consider the following weak and strong interval orders: 

I As J := I’ 5 J,. I dw J := I ,  5 J ,  and I* 5 J * ,  

Theorem 2. R is  order preserving from P to (V, dW), but not to  (V, ds). 
Proof. Let p 5 q. Then h,(O,p) 5 h,(O,q), and h,(q, 1) 5 l ~ + ( p :  I ) .  r l ? l ~ ~ ~ ~  l ye  1lil.ve 

but it might be that W(P) - he&, 1) 5 h,(O,q) or not, and so it could be that 
R ( p )  and R(q) are non-comparable in d8. 

We also have the following unproved conjecture about how scalar-valued rank 
arises as a special case of our interval-valued rank. 

Conjecture 1. Assume a fully bounded poset P ,  and a node p E P with r,(p) = 
r*(p) so that R(p) = [r, r] for some specific r E Z. Then V C  E C(0, l ) , p  E C iff 
C is maximal in the sense of ICl. Moreover, V p  E P, R(p) = [T, T-] iff P is JD. 

For example, in Fig. 5 ,  we have R ( H )  = [2,2] = 2, and 19 is only 011 a 
maximal chain 0 5 A 5 H 5 I 5  B 5 1. 

4.2 Vector-Valued Poset Distance 
In conjunction with our new sense of “vertical distance” in posets, we also wish to 
have a general sense of distance which captures the horizontal component as well. 
Towards that end, for some collection of nodes Q E P ,  including both comparable 
and non-comparable pairs, we need to characterize the nodes “betweeii” them in 
some sense. We characterize this as the neighborhood of Q, and our sense of 
distance is directly related to some measure of the “size” of (,his rcgioii ol‘l’. Tliis 
should be a vector quantity consisting of a horizontal and vertical component, 
since these concepts are so distinct in posets. 

We have some preliminary ideas in this direction, which we report here, al- 
though we regret that we haven’t yet explored the implications of our definitions 
deeply yet, nor the relationship to interval-valued rank described above. 

Definition 1 (Neighborhoods). Assume a poset P and a collection of nodes 
Q E P. If V Q  exists, then define the upper neighborhood of Q as.the inter- 
section of its filter and the ideal of its lubs: 

R(P) = [h*(O,p),w(P) - L(p, I)] l‘w R(q) = [L(O,q),3-I(P) - L ( q ,  111 directly, 

If A Q  exists, then define the lower neighborhood of Q dually: 

When both V Q and A Q exist, then define the neighborhood as the intersection 
of the hourglass and the interval between the lubs and glbs of&: 

I n  all cases, i f  IQI = 2 so that Q = { p ,  q } ,  then define for  each appropriate form 
e.9. N ( p ,  q)  := N ( Q ) .  



Note that N ( Q )  exists because necessarily /\Q 5 V Q .  A simplified cartoon of 
the appearance of N * ( p ,  q )  is shown in Fig. ??. 

Fig. 6. Cartoon of the upper neighborhood N ’ ( p , q )  (shaded region). 

The idea is to say that the nodes in the neighborhood of Q should be “en- 
trained” by both the filter f Q and ideal 1 Q (that is, by the hourglass S ( Q ) ) ,  
but then also should not be “higher” than the joins V Q ,  nor “lower” than the 
meets AQ; indeed, they should be only those parts of the hourglass between 
A Q  and V Q .  Thus we have: 

Conjecture 2. N ( Q )  is the set of all chains between /\Q and V Q  which go 
through some node of Q. 

Chains have no horizontal width, so an easy special case is recovered. 
Theorem 3. If C = {pl,pz,. . . ,p,} C P is  a chain with p1 5 p:! 5 . . . 5 p,, 

Proof. Let C = { p l , p z , .  . . ,p,} be a chain with pl 5 p2 5 . . . 5 p,. Then 
f p l  2 f p i  for all 2 5 i 5 n, and l p ,  2 Ipz for all 1 5 i 5 17, - 1 Also, 
A C = pi, v C = p ,  both exist, so that [A C, V C ]  = b1 , p , ] .  ‘l’hus we have: 

then N ( C )  = [Pl,P,l. 

N ( C )  = Z(C) n [ / \ c , ~ c ]  

= ((UTPC) ” (41.1)) n bl7Pnl 

Note the trivial corollary that p 5 q + N ( p ,  4 )  = [ p :  q ] .  
We now define a vector-valued distance in terms of these neighborhood. 

Definition 2 (Size and Distance). Assume a bounded poset P .  Then let the 
vector-valued size of a collection of nodes Q C P be 

WQ)  := W ( N ( Q ) ) ,  W N ( Q ) ) )  

and the vector-valued distance between two nodes p, q E P be D(p, q )  := D({p, 9)). 



For examples, consider that in Fig. 2, we have 

We recover a pseudo-distance easily for the case of comparable nodes. 

Theorem 4. I f p  5 q, then D(p,q) = (6,(lo,q), 1). 

Proof. If p 5 q, then we know from Thm. 3 that N ( p , q )  = Ip ,q ] ,  and thus 

In the future, we may recover other pseudo-distances 6 if  we first restrict our 
sense of height " ( P )  to bounded posets, but then rclax 11 to be tlie iii~ei val 
R ( P )  = [h,(O, l),h*(O, l)] instead of the scalar Z ( P )  = h*(O,l). 

5 
We recognize formal concept analysis (FCA) as both a foundational tool for 
the representation of relational information [5], and a way to extract semantic 
hierarchies from relational data. The trivial observation that every lattice is a 
poset opens the way to the consideration of the application of our ideas about 
levels and distances to nodes in CLs. 

Space precludes a detailed exposition, instead we 1 elel to llie slaiidu cl I cl- 
erences [5]. Instead, we will simply assert the availability of a context as a 
binary relation R C_ X x Y which generates a poset C = (P, S), where: C 
is actually a lattice, in particular the concept lattice of R; P C_ 2x x 2y is 
a set of concepts generated by R; and 5 is the subset ordering such that 
p 5 q := p = ( A l , B l ) , q  = (Az,B2),  with A I  C_ A2 and B1 2 B2, where 
&,A2 G X , B l , B 2  c Y. 

DO, 4 )  = ('Fl([p, 411, w[p, Q1)) = q) ,  0) = (&(lo, 9) ,1) .  

Distance Measures in Concept Lattices 

Lattices as Special Posets: When a poset P is a lattice (recalling that P here 
is finite), we always have that VQ P, v Q and A Q csisl, aid IUI  tilci IIIOI'C 

as unique members of P. Thus the formulations of Def. (1) and (2) become 
largely simplified, for example: 

N03, q)  = (TP U T q U l p  U 14)  n ( T ( L P  n 1 4 )  n ~ ( T P  n T (I)). 

We do not know of the further significance of this a t  this time, and in par- 
ticular what the meaning of these kinds of expressions are specifically in the 
context of P being a CL C. Indeed, we are suspicious that we are probably 
recapitulating or generalizing known results from latticc i,licoi 1' [3] 



Ontology Induction: One of the great challenges in ontology work is tlie abil- 
ity to create ontologies from other information sources such as relational 
or statistical data. CLs provide such an opportunity. In our case, we are 
working with molecular biologists and machine learning researchers who are 
creating relational knowledge bases of the interaction between a set of pro- 
teins R = {ri} and ligands (smaller molecules which biiicl to ~ l i c i i ~  tu loi m 
biologically active complexes) L = { l J } .  As illustrated in Fig. 7, this provides 
a formal context in R x L relating proteins to those ligands with which they 
bind, and the resulting CL is a semantic hierarchy categorizing proteins r in 
the context of those ligands 1 which they bind, and vice versa. In this way, an 
actual POSO 0 is generated, where concepts P = 2L are collections of lig- 
ands, 5 is on L,  X = R, and F is determined by tlie concept lattice. Thus 
0 is fodder for our methodology, including POSOC for categorization, but 
also explorations of mappings from these proto-ontologies to other existing 
ontologies such as the GO or EC. 

+ r 1 1 0 1  
7 - 2 0 1 0  
r , 1 1 0  

Fig. 7.  Mapping a protein-ligand binding relation to its concept lattice protc-ontology. 

Anomaly Detection: We conclude with the final direction in which we would 
like to take this work, namely the use of measures in semantic hierarchies 
to detect anomalies in relational data as represeiitd 111 C1.z Siiiipl) put,, 
depending on the semantics of the formal context being represented, there 
may or may not be an expected distribution of nodes in the CL with respect 
to their cardinalities, that is [AI and IBI. In other words, object concepts 
(where IAl = 1) should be “low” in the hierarchy, and attribute concepts 
(where IBI = 1) “high”. When this is not the case, it indicates an usual 
object, attribute, or collection thereof. Much more needs to be explored 
here, but for now we will leave this as a suggestion for tlie community to 
consider further development. 
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